7 research outputs found

    Mass Spectrometry Combined with Oxidative Labeling for Exploring Protein Structure and Folding

    No full text
    This review discusses various mass spectrometry (MS)-based approaches for exploring structural aspects of proteins in solution. Electrospray ionization (ESI)-MS, in particular, has found fascinating applications in this area. For example, when used in conjunction with solution-phase hydrogen/deuterium exchange (HDX), ESI-MS is a highly sensitive tool for probing conformational dynamics. The main focus of this article is a technique that is complementary to HDX, that is, the covalent labeling of proteins by hydroxyl radicals. The reactivity of individual amino acid side chains with *OH is strongly affected by their degree of solvent exposure. Thus, analysis of the oxidative labeling pattern by peptide mapping and tandem mass spectrometry provides detailed structural information. A convenient method for *OH production is the photolysis of H(2)O(2) by a pulsed UV laser, resulting in oxidative labeling on the microsecond time scale. Selected examples demonstrate the use of this technique for structural studies on membrane proteins, and the combination with rapid mixing devices for characterizing the properties of short-lived protein (un)folding intermediates

    Experiment-Guided Molecular Modeling of Protein–Protein Complexes Involving GPCRs

    No full text
    Experimental structure determination for G protein coupled receptors (GPCRs) and especially their complexes with protein and peptide ligands is at its infancy. In the absence of complex structures, molecular modeling and docking play a large role not only by providing a proper 3D context for interpretation of biochemical and biophysical data, but also by prospectively guiding experiments. Experimentally confirmed restraints may help improve the accuracy and information content of the computational models. Here we present a hybrid molecular modeling protocol that integrates heterogeneous experimental data with force field-based calculations in the stochastic global optimization of the conformations and relative orientations of binding partners. Some experimental data, such as pharmacophore-like chemical fields or disulfide-trapping restraints, can be seamlessly incorporated in the protocol, while other types of data are more useful at the stage of solution filtering. The protocol was successfully applied to modeling and design of a stable construct that resulted in crystallization of the first complex between a chemokine and its receptor. Examples from this work are used to illustrate the steps of the protocol. The utility of different types of experimental data for modeling and docking is discussed and caveats associated with data misinterpretation are highlighted
    corecore